DETERMINATION OF THE SORET COEFFICIENT IN A
THERMODIFFUSION COLUMN BY THE TRANSIENT
METHOD. I
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A method of determining the Soret coefficient for binary mixtures is proposed and sug-
gestions are made on how to use thermodiffusion columns for this purpose.

The Soret coefficient is a phenomenological quantity which characterizes the rate of thermodiffusion
in liquids, A compilation of test data pertainingto thiscoefficient for various binary mixtures seems im-
portant on two counts, First of all, such data may provide a valuable tool to researchers engaged in de-
veloping the theory of the liquid state and, secondly, they provide a basis for evaluating the practical ad-
vantages of the thermodiffusion process in partition technology.

At the present time the Soret coefficient is determined in cells, various forms of which have been
described in [1]. An outstanding feature of these devices is that they operate on the principle of measuring
the elemental thermodiffusion effect in liquids. Disregarding for the time being some other drawbacks of
this method, we will point out one of them: the small changes of concentration in these cells and, there-
fore, the imprecision of measurements, This aspect is largely manifested in mixtures where one of the
components appears in very small quantities. In this case the difference between the concentrations at
the active cell surfaces under steady-state conditions is
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It is evident from this relation that, when concentrations are of the order of 10~ or lower, a change in
concentration lies within the sensitivity range of modern instruments such as the laser interferometer
which the authors of [2] have used.

These difficulties become magnified further in the case of isotope mixtures. In this regard a thermo-
diffusion column is preferable to a cell, inasmuch as the high multiplication of the elemental effect in the
former can yield large changes in concentration. However, the use of a column as an instrument for mea-
suring the Soret coefficient has made it necessary to develop a theory of the partition process occurring
in such a column and such a theory has, indeed been developed by Jones and Ferry in their well known
work [3]. This theory is built on the premise that the components of a mixture do not differ with respect
to such physical properties as density, viscosity, and volume expansivity, which happens to be most nearly
the case in an isotope mixture, If these physical properties of the components differ significantly, how-
ever, then assuming them constant along the column height will inevitably lead to erroneous results.
Nevertheless, if the process is continued for only a limited time within which the change in concentration
remains small and, consequently, the physical properties of the mixture will not vary much along the
column height, then the use of such a column as an instrument for determining the Soret coefficient be-
comes proper and worthwhile,

Apparently, the feasibility of such an application for thermodiffusion columns was first indicated by
Ruppel and Coull in [4]. For short time intervals and ¢ « 1 Debye [5] has established a direct proportion-
ality between the difference of concentrations at the ends of a column, when both ends are closed, and the
square root of the time, von Halle [6] then used his method of linearizing the appropriate nonlinear differential
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X | . equation, while the authors of [4] later used the Majumdar method [7] of
; % s’%, linearization in deriving an analogous formula for any concentration c:
| | % Ce—C; =46, (1 —¢) ]// —91 (1)
| | P "
‘ | % differing from that in [5] by the factor (1—c).
? ? ‘}%} The idea originated in [4] was subsequently tried out by Bott and
\ ] | o | {1 f. Romero [8] in a rather highly sophisticated experiment. As the test sub-
" ! | 'y stance they used an equimolar n-heptane —benzene mixture, Although
| | ?ﬁ these authors claim a close agreement with formula (1), an examination
| ! '% of the graphs presented in their report indicates that the straight lines in
. ; ; 't Ac—v T coordinates do not pass through the origin of coordinates and that
' I % the value for the thermodiffusion constant here (¢ = 0.82) is equal to al-
X | } | | most half the value obtained by the authors of [9] for the same mixture in
5 . 1= ‘ % . a cell, ‘

This offset of such a straight line from the origin of coordinates was
noted in many tests with various binary mixtures, In many tests which
Bukhtilova and this author have performed with various binary mixtures
the straight line was also offset from the origin of coordinates, in agree-
ment with formula (1) requiring that Ac = 0 at ¢ = 0,

Fig. 1. Schematic diagram
representing the hydro-
dynamics in a liguid-type
thermodiffusion column
with both ends closed.
It could have been hypothesized that such an offset is a consequence

of the mixing due to parasitic convection. A review of the test data in [8]
indicates, however, that the straight lines corresponding to larger column eccentricities (testsNos. 19 and
20) and thus also to the highest rate of parasitic convection intersect the axis of abscissas closer to the
origin of coordinates than the straight line in test No. 18 with a smaller column eccentricity. This leads
us to conclude that the said offset may hardly be attributed to parasitic convection,

In connection with this, it is appropriate to quote Jones and Ferry {3, p. 66] pertaining to relation
(1): "in practice this relation is violated at small values of ¢, since the space at a column end where the
convection stream reverses constitutes a sort of small reservoir,"

On the strength of this statement, one may propose another model of the process, other than the
conventional physical model; based on the existence of small regions at the column ends (Fig. 1). The
conventional flow pattern assumed in a column closed at both ends is shown in Fig. 1a, where the existence
of any such region has been disregarded. In reality, however, a 180° reversal of the stream generates a
region (shaded area in Fig. 1b) where there occurs no transverse molecular thermodiffusive transfer cor-
responding to an elemental partition effect, i.e., which is equivalent to a region of mixing,

It is to be noted here that utterly insufficient research has been done so far on the hydrodynamics in
vertical gaps, especially in liquid-type thermodiffusion columns, Apparently, the idealized model on the
basis of the flow pattern in Fig, 1b is inaccurate, Mikheev [15] has noted that in narrow gaps between ver-
tical surfaces there form closed loops along the gap height, their number depending on the gap width, on
the temperature difference, and on the kind of liquid. The model in Fig. 1b must then be replaced by the
model in Fig. le, where the entire column seems to comprise a series of columns with interstitial spaces
between them. This pattern, however, can be reduced to the pattern in Fig, 1b with several times larger
end regions,

On the basis of such a physical model, the description of the transfer process in a column with both
ends closed must, at Ieast along the initial segment of the kinetic curve, take into account the existence of
reservoirs at the ends, i.e., the boundary conditions must be stipulated without assuming a zero flux at the
column ends,

As is well known, the following differential equation
' : —o)]
G _ 0  dle(l—o)] 2
a6 oy dy
describes the thermodiffusion process in a column, We will further consider the case where c(1—c) = y,

with the quantity y almost constant, This case corresponds exactly to the conditions in the Bott—Romero
experiment,




.‘l\;\\ , Instead of (2) we have then
Do _ e
\ ® o ®
16 20 .
According to [1], the boundary conditions with said regions
l formed at the column ends are stipulated as follows:
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Fig. 2. Linear approximation to dc dc
formula (14). S e v N
=Y, y=y,
Clg_p = Co- (6)
Under conditions (4) and (5), the solution to Eq, (3) in Laplace—Carson transforms is
- "y VoshV oy —
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In a column closed at both ends the volumes of the two end regions must be equal, in dimensionless
terms, we = wji = w.

Under this condition, (7) and (8) yield
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An inverse transformation yields

o= n 1— 42 (1 -~ op, sinp, —cos ) exp (— 12 o) |
o |7 0 g+ by sin, g @50t — Deosp,] | a0
where
o= ‘pj:‘w . x=0/y o) ay
and up are the roots of the characteristic equation
tgn, = - (12)
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For short time intervals or large dimensionless lengths ye the hyperbolic sine and cosine may be agsumed
equal, In that case we have instead of (9)

po 2 [ . 1 ]
p Ll oo wor Vo+ge) (13)
andan inverse transformation, with the notation in (11), yields

V=<2 (ex erfc 1'/;_=- 2 l/ —:x? - l). (14)

A comparison between the results obtained according to formulas (10) and (14) indicates that solution
(14) is valid for x < 1 (when w < 0.1).

When the left-hand side of (14) is divided by x, it appears that the right-hand side can be approxi-
mated as follows:

LAY Ve (15)
X

The graph in Fig. 2, where the values of v /% have been calculated according to formula (14), con-
firms within a 1.59% accuracy that v/x is a linear function of vx. Substituting in (15) for v and x their
values from (11) and using the expressions for 6, ye, and w, we may rewrite formula (15) as

%‘_zh.—nV?, (16)
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TABLE 1. Difference in Concentration (mol. fract.) as a Function
of Time (sec), in the Bott—Romero Experiment [8]

Test No.
17 18 19 20
T.10°% Ac 7-10-3 Ac 1:->10'3 Ae T-10-2 Ae
3,6 | 0,110 4,2 | 0,100 36 | 0,003 | 5,1 0,136
8.1 0,206 81 0170 8.1 0,116 87 | 0.158
10,8 | 0,225 4.4 | 0233 15,0 | 00182 15.0 | 0,200
16,2 | 0,333 | 92205 | 0306 | 204 | 019 18,0 | 0233
25,2 | 0.397 30,0 | 0,400 | 282 | 0,243 | 21,0 | 025
3900 | 0.314 | 246 | 0962
282 | 099
300 | 0310
where
H H —
h=%a—, n=1b-——y mK. 17
TR 7o 17

It is evident from (16) that the test points in (Ac/7)—v T coordinates fit on a straight line with the
slope n and the intercept h on the axis of ordinates. Both these parameters are determined graphically
and experimentally, With the aid of (17), we can easily find

hz . a H h a M a r m
= — o, T T ——— = — (,)L / —_
n b VmK' n b VmK b l K (18)
from where
= 10 bR — 1 bk SIAT
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The quantities g and b in (15) are found from Fig. 2, their values being different for different ranges
of the variable x: ¢ = 2 and b=1,504 for 0 < x < 0,01, but ¢ =1,92 and b = 0,915 for x > 0.01,

The values of ¢ and b within the first range of x can also be obtained analytically, if in (14) eX ~1
+x and erf v x z.z—(xi/z—(x3/2/3))/xf1r.

Then, discarding the term with x*/2, we obtain

2 :2(1—— 4,_ x”z), (20)

x 31w ..
i.e., the result in [6]. According to the formula derived here, b = 8/3y 7 = 1,504,

In (11) we now substitute for 6, yp, and w their values, Then
x = mKt/M?3,

(_bh )2
T={—| X
an

\

which together with (18) yields

in the second approximation range (b/q)? = 0,227. This range, as has been shown here, corresponds to
x > 0.01, Consequently, the test points in (A¢/ 7}~V T coordinates will fit a straight line for a time 7
. h\2

r>5.45-1o—3(-;) . @1)

In test No. 18 in [8], for instance, h/n=2.55" 10 '(see Table 2) and for time intervals longer than
450 sec there must exist a linear relation (16).
With the inequality sign in (21) reversed, the range of time is defined where formula (20) applies.

It is evident from (19) that, in order to determine the Soret coefficient as well as in order to use
formula (1), one must know the diffusivity at some mean temperature in the column which, in the absence

of test data, can be calculated,
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10 UT\’ It is noteworthy that the first formula in (19) does not contain the
dimensionless volume w explicitly but, as (18) indicates, in terms of
parameters n and h determined experimentally,

0 = oo & T

Fig. 3. Evaluation of the test
data in [8] according to for-
mula (16): 1) test No. 17, 2)
test No. 18, 3) test No. 19, 4)
test No. 20; ordinates Ac/ T,
sec-1; abscissas v T, sect/?, It is evident that most test points lie on straight lines, within an

entirely satisfactory accuracy. Exceptions are the last points in tests
No. 18, 19, 20 falling beyond the linear approximation to Eq. (14) and the first points in tests No. 19, 20,
the values of Ac for which are apparently too high,

Since in [8] were given data on the mean temperature difference throughout the test time, with a gap
width 2,65 10~ m, hence the values of n and h found from Fig, 3 will eagily yield the Soret coefficient
according to the first expression in (19), this expression becoming now

2
5 6,37, (22)

These formulas were used for calculating the Soret coefficient
from test data given in [8] and shown here graphically in Figs. 2 and 4.
From those graphical data, this author has set up Table 1 and, on this
basis, plotted the graphs in Fig, 3 in (Ac/T)—v r coordinates,

The results are shown in Table 2 along with the values based on data in [8] and calculated according
to formula (1) (last line in Table 2), A comparison between these and other values indicates that formula
(1) yields distinctly lower values for the Soret coefficient., In Table 3 are shown test data pertaining to the
Soret coefficient obtained by cell measurements by other authors, as of this author's writing. According
to Tables 2 and 3, the more reliable values obtained by column measurements are higher than such values

obtained by cell measurements,

These facts merit special attention. In this author's view, these facts indicate that in cells widely
used for measuring the Soret coefficient there always occurs parasitic convection due to inevitable tem-
perature nonuniformities, The latter may be a consequence of the difficulties in establishing a uniform
distance between the thermostaticized surfaces and in making these surfaces ideally isothermal, also a
consequence of a not exactly horizontal position of the cell. The effect of surface anisothermality on the
hydrodynamics in cells was studied in [12], for instance.

Thus, there is no doubt that parasitic convection occurs in any cell with a free volume (without mem-
branes) described in the technical literature, This explains the wide scatter of test points obtained under
apparently, at first glance, the same conditions by various authors, and even a mere comparison between
values for the Soret coefficient in Table 3 as well as a comparison with its values for a methanol —benzene
mixture obtained by various authors and shown in [14] will convincingly support this conclusion.

As we well know, columns are also not free of this deficiency. The cylindrical shape of the appara-
tus, however, ensures that it can be set up with high precision, which together with a well designed con-
struction and heating—cooling process makes it feasible to reduce the effect of parasitic convection.



TABLE 2, Data for Calculating the Soret Coefficient in an Equi-
molar n-Heptane —Benzene Mixture

Test No.
Parameter

7| | e
€105 m 5,6 7,7 37,1 22,9
AT, °C 10,8 10,4 14,2 15,6
n-107 sec™3/2 1,54 1,265 0,808 1,10
h-105 sec-t A 1 3,95 3,22 2,17 2,78
svD.10", m-°c™!. SE:C"X/2 accord- 4,58 3,99 ' 2,08 2,23
_ing to[19] T | ’
s-10% °c=! 6,0 5,01 2,61 2,88
5-10%, °C™! according to data in[8)]  2.73 2,63 1,2 1,2

Notes. 1) The Soret coefficient was calculated on the basic of the diffusivity at 25°C
_according to data in[13]: D = 2.47-107° m¥/sec-2) in (8] were given values of the
thermodiffusion constant. Conversion to the Soret coefficient was made on the basis
of temperature T = 300°K.

The data in Table 2 indicate that the test value for the Soret coefficient increases with smaller column
eccentricity, until at ¢ ~6 u it appreciably exceeds the values obtained in earlier studies for an n-heptane
—benzene mixture, The relation is shown graphically in Fig. 4. An extrapolation of the curve here till
intersection with the axis of ordinates will yield the hypothetical value of the Soret coefficient for the given
mixture at zero column eccentricity.

Values for the Soret coefficient obtained in cells must be considered too low, therefore, and this
agrees with the results of L. S. Kotousov's* irreversible-thermodynamics analysis of thermodiffusion in
liquids, according to which the values of the Soret coefficient must be much higher than those known at the
present fime,

In view of all this, fhere arises the question as to what is the true value of the_Soret coefficient and
as to whether the more reliable values in Table 2 approach the maximum possible value, Unfortunately,
the theory which has been presented here cannot provide an answer,

The values according to formulas (19) approach the true values, as the column used for measure~
ments becomes more nearly perfect.

The quantity w, which characterizes the size of the end regions, offers some indication as to how
nearly perfect a column with both ends closed can be, The second formula in (19) yields w =~ 0.07 for tests
No. 17, 18 and w = 0,11 for tests No, 19, 20 with a larger eccentricity. As the eccentricity increases,
so does the parasitic convection. Thus, the value of w appears to be some effective value which includes
the actual volume as well as some fictitious volume equivalent to the mixing region due to parasitic con-
vection,

Further research ought to be directed toward designing an apparatus where interference by parasitic
convection is minimized. Nevertheless, the analysis presented here does already indicate that a thermo-
diffusion column is a better instrument than a conventional cell for measuring the Soret coefficient, The
last statement applies particularly to isotope mixtures where one component appears in very small amounts.

*Pprivate Communication.

TABLE 3. Data on the Value of the Soret Coefficient for an Equi~
molar n-Heptane —~Benzene Mixture, Obtained by Various Authors

Authors ' T, °K s-10% °c™!
D.}. Trevoy and H.G. Drickamer [10] 206, 1 4,02
J.A. Bierlein, C.R. Finch, and H.E. Bowers {11} 298 1,49*
J. Demichowicz-Pigoniowa, M. Mitchell, and
H.J.V. Tyrell-{9] 298 4,58—5,02

* Interpolation obtained,
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NOTATION
is the concentration;

8 = H*7 /mK;
H = 5gpp0°(AT)B/6ln;

K = p°3%"(AT)*B/9!0’D;

m = pB6;

T is the time;

p is the density;

B is the volume expansivity;

6 is the gas width;

_AT = Ti —-Tz H

T = (Ty +T,)/2;

Ty, Ty are the temperature of the hot and cold surfaces;
B is the gap perimeter;

n is the dynamic viscosity;

D is the diffusivity;

y = Hz/K;

z is the vertical coordinate;

ye = HL/K;

L is the active height of the column;
w=M/mL;

M is the mass of the partitioned mixture filling the end spaces of the column;
€ is the column eccentricity;

8 is the Soret coefficient;

n is the slope of the correlation line,

Subscripts

e denotes the positive end;
i  denotes the negative end of the column,

w N
D)

SRR

11,
12,
13.
14,
15.
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